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Modifications of the equation of unsteady transonic flow are investigated, which avoid the drawbacks which arise when using 
the transonic approximation (the Lin-Reissner-Tsien equations) and other equations of unsteady transonic flow to describe 
transonic flows. Several problems concerning flows of this kind (the stability of transonic flows, the formation of unsteady shock 
waves and the mathematical modelling of flows) are solved. © 1998 Elsevier Science Ltd. All rights reserved. 

In the past, attempts to simplify the equations for the gas motion at sonic velocities have involved the 
use of a so-called transonic expansion in terms of a small deviation of the actual Mach number of the 
flow from unity. This is the simplification for unsteady transonic motion made by Linet  al. in [1]. 
Although the resulting equation (the LRT equation) retains many important features of transonic flows 
(such as non-linearity and spatial non-uniformity, and also describes regions of subsonic and supersonic 
flow), it has been shown to have serious defects. It gives infinite rates of downstream propagation of 
weak unsteady perturbations, and at every instant of time the wave fronts of perturbations arising from 
a point source are unclosed curves (parabolas). The Cauchy problem for the LRT equation is ill-posed, 
it does not describe high-frequency unsteady perturbations, etc. Nevertheless, as it is the simplest 
available, the LRT equation has been widely used to analyse unsteady transonic flows. A review of this 
work and some results can be found in [2, 3]. 

An investigation has been made of the correct formulation of boundary-value problems for the LRT 
equation.~: Since its characteristics are the surfaces t = const, not all the initial data can be assigned in 
the plane t = 0. The condition imposed on the required function at t = 0 must be supplemented by 
conditions on the function and its first derivative with respect to the space coordinate x, given at 
x = 0. Furthermore, this derivative must be positive. 

Several different attempts have been made to overcome the defects in the description of transonic 
flows based on the use of the LRT equation, mainly by adding various terms [4]. Research has shown 
that adding a term with a second time derivative to the LRT equation [5, 6] removes many of the 
difficulties mentioned above. The modified equation describes perturbations of any frequency (including 
high-frequency perturbations) propagating in any direction (including downstream). The Cauchy 
problem for this equation is well-posed, the cone of the dependence of the solution on the initial data 
can be constructed, an energy integral can be obtained as well as estimates of the solution for the initial 
and boundary-value !problems. 

Below we consider some problems in the theory of unsteady transonic flows based on the modified 
equation of unsteady transonic flows [6], as well as other modified equations which model flow of this 
kind. 

In real conditions of boundary layer turbulence, there is a source of unsteady perturbations at the 
flow boundaries, and these spread in every direction in the flow field. Apart from those which are moving 
against the basic flow, progressive waves disappear rapidly, owing to the relatively high velocity with 
which they propagate. The perturbations which move upstream accumulate in regions where the super- 
sonic flow decelerates to subsonic velocities. If there is no dissipation of energy of these perturbations, 
there is enough time for them to grow and, ultimately, destroy the smooth steady flow. It is probable 
[7] that the flow either becomes unsteady or contains shock waves, or both. This view is confirmed by 
experiment: there are stable plane transonic flows which contain steady shock waves [8]. Furthermore, 
a study of the behaviour of weak steady perturbations generated by irregularities of the flow boundaries 
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has shown that their growth can lead to the formation of shock waves inside the supersonic flow regions 
[9, 10]. The shock waves can arise from the growth of unsteady perturbations which arrive from outside 
in the transonic flow region. 

Serious difficulties are encountered when investigating the stability of transonic flows with respect 
to small unsteady perturbations, owing to the fact that the equations of transonic approximation are 
non-linear [3]. Also, these partial differential equations for a steady background (the stability of which 
is being investigated) are of a varying elliptic-hyperbolic type. For this reason, the stability of transonic 
flow has only been determined using a quasi-one-dimensional approximation [11-13] and linearization 
of the LRT equation [14] (which, as we have mentioned, has a number of drawbacks). The various 
attempts to perform a more general analysis have proved unsatisfactory, even to their authors [7]. 

The issue on the appearance of shock waves in transonic flows has previously been considered in the 
steady case only. The examples constructed of flows with steady shock waves are realized in Laval nozzles 
with an extended transition section [2]. 

The use of the transonic approximation in its classical form [3] distorts the structure of the region 
in which a solution is sought: a family of degenerate characteristics (the trivial planes t = const) arises, 
and the cone of the dependence is destroyed and degenerates into a paraboloid of influence. Nor has 
it been possible to obtain the energy integral normally used in the theory of partial differential equations 
to obtain estimates for the solution of equations of this kind. Note that an energy integral can be 
constructed if a mixed problem is posed for the LRT equation with data in the planes t = 0 and x = 0 
(see the reference in the footnote). 

Below, using a modified equation of unsteady transonic flow [6], by means of which it is possible to 
describe perturbations which propagate downstream, we analyse the development of small unsteady 
perturbations in transonic flow. We consider the issue on the formation of the envelope of the acoustic 
characteristics of one family, implying that an unsteady shock wave has arisen. We show that the modified 
equation does not describe the flow dynamics in a direction transverse to the main flow. Moreover, we 
obtain an energy integral for unsteady transonic flow. For mixed problems the results largely depend 
on the boundary on which the boundary conditions are specified, since (like the LRT equation) the 
proposed modified equation is not invariant when the axes of the space coordinates are interchanged. 

Since the modified LRT equation does not permit a sufficiently accurate solution of the theoretical 
problem of transonic flows (the results are sometimes simply false), by an extension of earlier studies 
on a modification of the equation of unsteady transonic flow, in Section 5 we give an equation which 
can be used to study the non-linear evolution of wave fronts propagating at an angle to the direction 
of the main flow. This new modification involves taking account of terms of the next order of smallness 
in the usual transonic expansion. We solve the problems described in Sections 1-4 using this equation. 

The proposed modified equation of unsteady transonic flow enables us to obtain a mathematical model 
of the operation of a transonic nozzle under unsteady conditions [15]. 

Note that there have been numerical calculations of unsteady transonic flows using equations other 
than the LRT equation for the model. Thus, the modified equation in [16], which contains several of 
the terms proposed in the equation below, has been used to give a better description of the flow, but 
without a specific proof of the modification or any comment thereon. 

1. WEAK UNSTEADY P E R T U R B A T I O N S  OF TRANSONIC FLOW AND 
THE M O D I F I E D  L I N - R E I S S N E R - T S I E N  EQUATION 

The investigation below concerns unsteady transonic flow in a channel (nozzle) with plane geometry. 
The channel axis is taken to coincide with the X axis. 

In the given approximation, which involves an expansion of the flow parameters in terms of the small 
derivation of the actual Mach number from unity (the conventional transonic expansion), the shock 
waves (if there are any) remain weak, the vorticity arising in the flow is low, and therefore we can 
introduce the velocity potential tI): u = Ox, v = Or-. The equation for the potential tI) follows from the 
equations of motion and continuity 

( a  2 -- tI)2)tI~XX -2~x~r~Pxr+(a2-~p2r)~rr-2~x~x.r-2t~r~rr-Orr =0 (1.1) 

the velocity of sound a being determined by the equation of the conservation of energy 

a 2 . u  2 + ...... l a.2 (1.2) 

~'-1 2 ¥ - 1  
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a** and U are the characteristic velocity of sound and the velocity of main flow in the channel and T is 
the adiabatic exponent. 

We will introduce :new dimensionless space coordinates and time 

Lx = X, Ly = 87sY, t = 8~UL-~T 

(L is the characteristic length and 8 ,~ 1) and an expansion of the potential in the form [3] 

• = U(Lx + 8~/#(x ,  y, t)+...) 

(transonic flow is represented as a perturbation of one-dimensional flow along the x axis with constant 
velocity U). We have 

~ x = U ( l + 8 ~ 0 , ) ,  O r = U ~ y ,  ~r=U28~tp ,  (1.3) 

and the system of equations (1.1) and (1.2) becomes the equation 

8 [b-T-1 1)~px - 
2 

-2(1+ 8Htpx)tp~ - 28~gy~0ty - 8Hip# = 0 

For terms of order 84/3 we obtain [3] 

(K-(v+l)qUx q~+~oyy-2tPx,=O, K='8~(I-M~), M..=UIa** 

(1.4) 

(1.5) 

Equation (1.5) is known as the LRT equation. It does not hold for high frequencies of perturbations 
Orr > ¢~r. 

According to the estimates (1.3) 

Orr = L-103829# (1.6) 

Assuming that the quantity cp# can be very large, we retain the term (1.6) when writing the transonic 
limit. We obtain (e = 52/3 "~ 1) 

(K - (T + 1 ) g x ) ~  + 9yy - 2qp~ - etp# = 0 (1.7) 

The coefficient of O~x is an alternating-sign quantity, depending on whether the flow is sub- or 
supersonic, since 

a 2 - -  u 2 = ( K  - ( ¥  + 1)~0 x)8 ~j + O(8~). 

Whatever the sign of that coefficient, Eq. (1.7) is hyperbolic, and since the coefficient depends on 
the first derivative of the potential, it is quasi-linear. 

Characteristic surfaces can be obtained for Eq. (1.7) (or (1.5)) [3]. The characteristic surfaces of 
Eq. (1.7) are the cones 

K*t 2 + 2t( x - x o) - 8( x - x o)2 = (y _ Yo )2 (I + e/C" ) (1.8) 

IlK* = K -  (y + 1)qu x = const, for each fixed t, Eq. (1.8) gives an ellipse in thex,  y plane (Fig. 1). 
The case e = 0 has already been explored [3]. In that case (supposing also thatx0 = Y0 = 0) Eq. (1.8) 

transforms to an equation of the form 

K't  2 + 2tx = y 2  (1.9) 

The solutions of (1.9) for given t are parabolas in thex, y plane. These solutions imply infinite velocities 
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Fig. 1. 

of downstream propagation of the wave fronts of weak perturbations and are unrealistic from a physical 
standpoint. Note that when e = 0, the planes t = const will also be characteristic surfaces. Infinite 
velocities of downstream propagation of perturbations and the ill-posedness of the Cauchy problem 
for the LRT equation are a formal consequence of this. 

We will consider the envelope of wave fronts (1.9) as t changes. This envelope (for K* = const) is 
defined by the system 

K*t2 + 2 t x = y  2, K * t + x = O  

from which we obtain (when K* < 0 the flow is supersonic) 

x = - I - ~ [ - ~ y  (1.10) 

The envelope (1.10) determines the Mach angle. It can be verified that the wave fronts (1.8) issuing 
from the perturbation source at the point x0 = Y0 -- 0 have the same envelope. This suggests that the 
accuracy of the description of perturbations propagating upstream is adequate. 

There have been other modifications of the equation of unsteady transonic flow. It was proposed in 
[5] that account should be taken of the unsteady non-linear component (the term of order e according 
to Eq. (1.4)). Then instead of (1.7) we have the equation 

(K - (y + 1)q~ x - e(y - 1)q~, )q~xx + q~yy - 2¢Pxt - Eq~tt = 0 (1.11) 

used in [5] to analyse transonic unsteady gas flows in a channel. Some features of the analysis of transonic 
flows revealed Eq. (1.11), and other modified equations will be considered below. 

Equation (1.4), on the basis of which the approximate transonic equations are derived, is not invariant 
under an interchange of the axes of the space coordinates. Moreover, when a rough approximation is 
used, any weaker non-linearity of the equation in the direction of the transverse main flow is simply 
ignored. This can lead to incomplete and incorrect results and conclusions on the properties of transonic 
flows when studied in a spatial formulation. 

2. THE STABILITY OF TRANSONIC FLOWS 

The main conclusion of all previous investigations of the stability of transonic flows is that accelerated 
flows which pass through the speed of sound are stable, and decelerated flows are unstable [7, 8, 11, 
14, 17]. 

The view has been expressed [7] that the behaviour of perturbations at transonic points is typically 
non-linear, and it is normally impossible to use linearization when analysing the stability. 

We will show that the generally accepted transonic approximation, although it does preserve non- 
linearity, does not take any account of perturbations propagating downstream, while the modification 
of the LRT equation proposed in [5] gives incorrect results for perturbations which propagate transverse 
to the direction of the main flow. The influence of non-linearity will be taken into account below in 
Section 3. 

We will consider the behaviour of weak unsteady perturbations 
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9 = 9 ° ( x , y ) + & p ( x , y , t ) ,  ~'~1 

Linearizing Eq. (1.7) with respect to ~, we have 

K ' ° '~x~- (¥  + 1)&p~0° + ~£0. - 2~0xt - ~0t t  = 0 (K*° = K - ( y + l ) 9  °) (2.1) 

We let the perturbations have a plane front and consider a local analysis of their behaviour. We will 
assume that the coetficients of Eq. (2.1) are constant and we will seek a solution in the form 

(~0 ~ exp ( i ( - tot  + kx + ly)) (2.2) 

Substituting (2.2) into (2.1), we obtain the dispersion relation 

-K*°k  2 - ik(y + 1)9 ° - l 2 - 2kto + Eto 2 = 0 (2.3) 

which has two roots (since e ~ 1) 

=2 k = _ k  n (t~j +k~'),  02 
e 2 2 ' 

If 9 ° = u ° > 0 (unperturbed flow is accelerated) the root (Ol has a positive imaginary part and small 
perturbations increase, implying instability of the flow. In the case when ~0 ° = u ° < 0 (unperturbed 
flow decelerates) perturbations corresponding to the second root to2 will increase, and again the flow 
is unstable. 

As e ---> 0 the root to1 drops out and we obtain the usual result of gas dynamics [7, 11, 14] on the 
instability of transonic decelerated flow. However, it is clear that the result concerning the stability of 
accelerated transonic flow is largely associated with the use of the transonic approximation and neglect 
of the root to1. 

For steady accelerated transonic flows with steady perturbations, it remains true that the flow is shock- 
free [9, 10]. 

Perturbations con'esponding to the root to1 propagate in the direction of the main (unperturbed) gas 
flow and do not, under normal conditions, have time to develop sufficiently strongly. However, if physico- 
chemical processes involving the energy release take place in the main flow, weak perturbations can 
grow very rapidly and lead to a change of flow pattern (with the occurrence of jumps or even the 
development of unsl:eady flow). These issues are analysed in a quasi-one-dimensional approximation 
in [91. 

Notice that Eq. (2.3) does not contain derivatives with respect to the y coordinate, and hence the 
change in the flow parameters along they axis (across the direction of the main flow) is only taken into 

0 account indirectly (~= can depend ony). It follows from (2.3) that the flow is neutrally stable with respect 
to perturbations propagating along they axis (with k = 0). Thus, the analysis of the stability of transonic 
flow using the modified equation (1.7) gives incomplete and incorrect information. These results will 
be refined below in :Section 5. 

3. THE F O R M A T I O N  OF UNSTEADY SHOCK WAVES 
IN TRANSONIC FLOWS 

The problem of the development of shock waves in transonic flows is far from being finally solved. 
The importance of creating flow without shocks in applications, which encouraged the initial interest 
in the development and existence of shocks in flows of this kind, has led to the formulation of one of 
the most fundamental problems of gas dynamics. 

We know of no investigations of the development of unsteady shock waves in transonic flows. 
We will consider l~he development over time of the envelope of characteristics (1.8), denoting the 

formation of a shock: wave. We choose two centres--the perturbation source, with coordinates (x01,Y0), 
(xoE, Yo) (and identical coordinate) (Fig. 2). Using Eq. (1.8) we compute ar/Ox0 along the rayy = Y0 (where 
~y/~x 0 = 0, ~y0/ar 0 = 0). We have 

Ox = I + ~' + I t 2 t}.__u_u = 0 (3.1) 

Ox o 2 t-¢(x-x o) ox o 



780 A.N. Bogdanov 

Fig. 2. 

from which it follows when E = 0 that 

3u 2 1 < 0 (3.2) m 

~x o ~,+1 t 

A negative velocity gradient means that the envelope arises only for compression perturbations, 
and the earlier it is (the smaller t is), the larger the absolute magnitude of the velocity gradient 
will be. 

Relation (3.1) implies that when e # 0 the envelope only occurs for compression perturbations, the 
envelope arising faster (what the same initial amplitude of perturbation) in downstream (x > x0) 
perturbations. However, an analysis based on the LRT equation does not allow entirely for perturbations 
propagating downstream. 

We will consider the parts of wave fronts which move along the ray x = x0. We will compute 0y/0y0 
(in this case ax/0y0 = 0, 0xot0y0 = 0). We have 

9Y =1 T+I  t 2 - e ( y - y o )  2 3u (3.3) 
3Y0 2 (y-y0) ( l+gK*)  ~Y0 

For those parts of the wave fronts which are near-flat, Ou/i)yo = 0 and reversal does not occur (according 
to (3.3) ~y/0y0 = 1). 

When e = 0 Eq. (3.3) gives the condition under which the characteristics intersect, whence it follows 
that 

Ou = 2 Y -  Yo (3.4) 
bYo T + 1 t 2 

Using the condition for potential flow, we find 0~/Oy0 from (3.4). After differentiating with respect 
to Y0 and integrating with respect to x0 we have 

~ o  = -  2 X 0 

Oy o T + I ~ "+ V(y' y°) 

The first term is a negative quantity which describes the profile of the compression wave, the second 
is an undefined function, and full information about reversal of the wave front cannot be obtained. 
Hence, incomplete or incorrect results are obtained for those parts of the wave fronts which propagate 
across the direction of the main flow when the modified Eq. (1.7) is used to explore the formation of 
shock waves in transonic flow. 
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4. THE E N E R G Y  I N T E G R A L S  FOR THE EQUATIONS 
OF UNSTEADY T R A N S O N I C  FLOW 

In the theory of pa:rtial differential equations, estimates for the solution are obtained from the energy 
integral; the use of tlhis integral means that a uniqueness theorem can be proved for the solutions of 
these equations. A detailed analysis of these problems is made in [18, 19], for example. The modified 
equation introduced in Section 1 can be used similarly to analyse unsteady transonic flow. Unfortun- 
ately, it is not perfect (see the analysis of mixed problems below). 

We differentiate Eq. (1.7) with respect to x, introduce a new unknown function u = q~x and after 
multiplying by ut write the equation in divergence form 

- (ux)2 + ( K * u x u t ) ~ -  (uy)2 " t ' ( U y U t ) y - - ( ( U t ) 2 ) x  - 2(ut)  2 = Q  (4.1) 
t t t 

1 • 2 
Q =--iKt (ux) 

We now integrate Eq. (4.1) over the region V, which is the interior of the dependence cone, the base 
of which is the plane t = 0. The surface S of that regionis formed by surfaces of the dependence cone 
St, and So is the part,of the plane t -- 0 cut out by that cone (Fig. 3). Applying the Gauss-Ostrogradskii 
theorem, we obtain 

I I qdS = ~ QdV (4.2) 
S V 

q = x~: + ((K*u x - u t )u t )~ + (uyu t)rl, x = - 1 (e(u t)2 + (u r )2 + K* (u x )2 ) (4.3) 

(x, ~ and 11 are the components of the unit vector of the outward normal to S, along the t, x and y axes). 
We make one mo:re section ($1) of the characteristic cone by the plane t = tl > 0. Then as in the 

case of (4.2) we have 

I I qdS + ~ I qdS + l I qdS = ~ QdV (4.4) 
st s~ so v 

(V is the interior of the dependence cone with base t = 0 truncated by the plane t = tl). 
By the definition of the characteristic cone, the quadratic form (4.3) is non-negative on its surface. 

Then it follows from (4.4) that 

I I ~dS <~ ~ J ×dS + I~ QdV (4.5) 
s~ so v 

~4 

Fig. 3. 
S 

Fig. 4. 

/ 
Y 



782 A.N. Bogdanov 

(on So the unit vector of the outward normal is (-1, 0, 0), on S1-(1, 0, 0)). In (4.5) the integrand Q can 
be evaluated in terms of the integrands of surface integrals, and by changing from a volume to a repeated 
integral, limits for the solution of the equation can be obtained. 

We introduce the notation 

I ( t  I ) = ~ ~d S  
Si 

so that (4.5) can be rewritten in the form of the integral inequality 

I( h ) <<- l(t o) + M l l ( t  )dt 
to 

or the differential inequality dI/dt <~ MI  with solution I <~ I(to)e Mr. 
It is obvious that if 1(to) = 0, then I -- 0 for any tl > to inside the cone of dependence of the 

solution on the initial data. Thus, since the initial conditions are identically zero, the solution remains 
zero at all subsequent times. Hence, any non-trivial solution inside the cone of dependence is unique. 

Note that a similar proof cannot be given for solutions of the LRT equation because that equation 
has no dependence cone. Th e non-trivial characteristics which leave the spatial surface t = const form 
a paraboloid of influence. The Cauchy problem for the LRT equation has either no solution at all or 
an infinite number of solutions. 

Aspects of the correct formulation of a number of mixed problems of gas dynamics have been 
considered in [20]. The mixed problem turns out to be well-posed (it has a solution which is unique 
and has a continuous dependence on the initial and boundary data) inside the dependence cone if the 
energy integral is dissipative. A necessary condition for this is that the boundary conditions should be 
dissipative. 

For mixed problems, the boundary of the region V in which the energy integral is constructed 
(Fig. 4) consists of part of the surface of the characteristic cone, sections of that cone by surfaces 
t = 0, t = T, and also Sr, sections of the cone by the surfacex = 0 (or another planeAx + By = eonst), 
where the boundary conditions are assigned. 

Integrating relation (4.1) over the region Vand applying the Gauss-Ostrogradskii theorem, we obtain 
an inequality which differs from (4.5) in having the additional term 

-~ ( K*u x - u t )utdydt 
s, 

on the left-hand side (the unit outward normal to Sr is (0, 0, -1). 
By definition [20], the boundary conditions are dissipative if 

ut ( K'ux - ut ) Ix=o ~< 0 (4.6) 

In this case, the energy integral is obtained by the same technique as in the Cauchy problem. 
The physical meaning of condition (4.6) is as follows. For supersonic flow (K* < 0) which accelerates 

both in the direction of the x axis (Ux > 0) and over time (ut > 0), condition (4.6) is satisfied and the 
boundary conditions are dissipative. In that case inequality (4.5) is satisfied, and thus the Cauchy problem 
for transonic accelerated flows is well-posed, that is consistent with the results of Section 2 concerning 
the stability of such accelerated flow. 

If the velocity increases with time (ut > 0), but (Ux < 0) (considering the region of deceleration of 
supersonic flow K*ux > 0), and if also K*ux > ut, then condition (4.6) is not satisfied and the Cauchy 
problem is ill-posed. In the case when K*u~ < ut the opposite is true. Thus, in supersonic unsteadily 
accelerated flow, small perturbations have the capacity to grow and cause the development of instability 
only in regions of strong spatial deceleration of the flow. 

If supersonic flow is decelerated unsteadily, instability can develop at quite a large positive gradient u~. 
In zones of subsonic flow (K* > 0) during unsteady acceleration (ut > 0), one can expect the 

perturbations also to grow in regions of flow acceleration (at sufficiently large gradients u~, so that 
K*ux > ut). We then have completely the opposite picture to that of supersonic flow. 

Note that very different results are obtained.if the boundary conditions are assigned in the y = 0 
plane instead of the x = 0 plane. The inequality ~hen obtained differs from (4.5) in having on the left- 
hand side the additional term 
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- J ~ U yU, dxdt 
s~ 

(the unit outward normal to Sr is now (0, O, -1). 
The boundary conditions are dissipative if 

UyU, ly=0 ~< 0 (4.7) 

Condition (4.7) is satisfied, for instance, when ut > 0, uy < 0. For such flows at each instant of time 
the longitudinal component of the flow velocity decreases with distance from the axis of symmetry of 
the flow y = 0. Condition (4.7) is obviously not satisfied for unsteady Taylor flow, realized during the 
start-up (acceleration) of a transonic nozzle. For unsteadily decelerated transonic flow we have ut < 0 
and (4.7) is satisfied when u r > 0, that is, for flows with a longitudinal velocity component which increases 
with distance from the axis of symmetry of the flow y = 0 (like Taylor flows which occur during 
deceleration of a transonic nozzle, for instance). 

Comparing (4.6) and (4.7), we can conclude that the proof of the stability of transonic flow based 
on the energy integral for the modified Eq. (1.7) depends very much on the position in space of the 
line on which the boundary conditions are assigned and therefore the results apply only to a limited 
extent, and are sometimes incorrect. 

5. ALLOWING FOR HIGHER APPROXIMATIONS 
OF THE TRANSONIC EXPANSION 

Generalizing the above with respect to modification of the equation of unsteady transonic flow, and 
taking the defects of the equations that have been mentioned into account~it seems reasonable to use 
an equation which includes terms of the next order of smallness (order 82 = e) to analyse transonic 
flows. From (1.4) we have (the small constant terms e.K and e.K 2 are omitted) " 

K 9 x x + g r y - 2 9 j a - e  (y~-l)9,+--~---(gx) 9=+29yg~y+ 

+(Y - 1)gxgyr + 29xgxt + 9n ] = 0 (5.1) 

The term 9u con'esponds to singular perturbations. There are no other singular terms, but their 
denvatwes and combinations of such , 2 for exam le when 2 1 . . . .  9t (gx), 9y, qhy ( 2 P , (9x) - e- the quantity 9~ is 
not very large, but allowance must be made for (gx), and other combinations of derivatives 
occurring in (5.1) might be large. Moreover, the remaining non-linear terms of order e have a different 
physical meaning: ~vg~ and 9xq~y describe the non-linearity in a transverse direction to basic transonic 
flow; 9t9= and 9xgxt have an additional non-linearity, which appears during unsteady motion; (9~) 2 9= 
has an additional non-linearity in the direction of the main flow. 

The characteristic surfaces defined by Eq. (5.1) satisfy the relation (where terms of order known to 
be higher than e are', omitted) 

Kit -K3 t (X-Xo) -K4 t (y -yo ) -e . (X-Xo)  2 = +eK* (y -yo )  2 

Ki ~ K ~ 

K 3 = -2(1 + egx), K4 = -2e9y 

(5.2) 

For constant coetticients K~, K2, K3, K4,K*, for each fixed t Eq. (5.2) gives an ellipse in the plane of 
the variablesx, y. The ellipse becomes larger in time, its foci and centre moving along thex axis. Generally 
speaking, the coefficients in Eq. (5.2) are not constant and the signs might change in different regions 
of the field of flow. 

The equation of the envelope of characteristics (5.2) over time is governed by the following equation 
(the coefficients are assumed constant and the expansion in terms of e is taken into account) 
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(5.3) 

We see (as in (1.10)) that the envelope exists only in supersonic flow K* < 0. The term Kd2 in (5.3) 
corresponds to propagation of the disturbance in a direction transverse to the main flow at a velocity 
2 ~ .  This velocity can be assumed to be approximately constant and to have a different direction on 
different sides of the y = Y0 axis. Thus, the envelope of the wave fronts from a point source of 
perturbations is steeper than (1.10). Moreover, the slope increases, on account of the term in (5.3) 
associated with (~)2, and can decrease or increase on account of the terms containing q0t and q)x, taken 
with the appropriate sign. 

To investigate the stability of transonic flow in relation to weak (linear) unsteady perturbations, as 
usual we linearize this equation and, taking its coefficients to be constant, look for a solution proportional 
to e x p ( - / ~  + i/oc + i/y). We obtain a dispersion relation which (using the smallness of  e) has roots 

k [  £ . 0 0 8 . (ol, 2 = 1 - - ~ ( , ( T -  1)~oxx -2kq)x )+(1- -~ - '~ ( , (T - l ) (p  ° - 2 k ~ o ° )  - 

. o o  o o 2 )  ¢ {_kZK*O_ik (T+l ) {po_12_e (T+l )~k~Px{p~+ek  2 -1)~o t +---~---(~o x) - 
- 2k  2 

-2ilE~ O. + 2~kl(p 0 + (T -l)Eik(p°r + (T -l)El2q O0 - 2Eikq)°t })] (5.4) 

From the form of the roots (5.4) it can be concluded that any inhomogeneity of the flow expressed 
0 0 0 0 0 by the derivatives %r = ~ ,  q)xy = "x = ur, %t = ut and functions ¢Pr = ",  % = u leads to a growth of 

perturbations corresponding to either the first or the second root of (5.4). 
On the basis of Eq. (5.1), we consider the development of unsteady shock waves from wave fronts 

which propagate across the direction of the main flow from two sources on the x -- x0 axis with ordinates 
Y01, Y02. Using Eq. (5.2) we calculate ~v/~0 along the ray x = x0, and have 

~Y0 2(y - Y0) L °y0 t, ~, 

~u 
+I~t(T- 1)~w~-~t + ff(T + l)u ~-~ --u- 2e w - - ( y -  yo)] 

oYo oYo aYo J 

Y - Y0 

For near-planar fronts Ou/Oy o = 0 and the last term will have the main influence, that is 

0y 0u 
~Y0 = I + E ~ - ~ 0  t 

For a shock wave to develop, we must have 

~ v  1 
= - ~ < 0  

~Yo et 

which corresponds to the result (3.3) (the wave fronts of compression perturbations are reversed). 
The equation of unsteady transonic flow in modified form (5.1) is also invariant under an inter- 

change of the x, y axes. Thus, the condition for dissipative boundary conditions in the mixed 
problem will, as before, largely depend on the choice of the line on which the boundary conditions are 
assigned. 

We can, however, determine what allowing for additional terms of the transonic expansion will achieve. 
We will consider the energy integral for the mixed problem on the basis of Eq. (5.1). 

The requirement that the boundary conditions shall be dissipative is now: 
when the boundary conditions are given on the x = 0 axis 



Higher approximations of transonic expansion in problems of unsteady transonic flow 785 

ut[K*u x -ut-~.((y-1)cp, +~--~u2)ux +q~ruy +uu,] I ~0 
JIx=O 

(5.5) 

when the boundary conditions are given on the y = 0 axis 

U t [Uy - £(q~yU x + ( ~  - 1)UUy)] ly=0 ~< 0 (5.6) 

Inequalities (5.5) and (5.6) are obviously very different. 
If the quantities ¢~ = x~, u r are large, instead of (5.6) we can use the inequality 

u,[% -evux ]ly=o ~< 0 

T h i s  inequality is satisfied, for example, w h e n  u t > 0, uy > 0, t,) > 0, u x > 0, uy < E'I)U x (which is true f o r  
unsteady Taylor flows realized during start-up of a transonic nozzle). 

Thus, if Eq. (5.1) is used instead of (1.7), a result can be obtained on the stability of unsteady 
accelerated Taylor flow for sufficiently large ~, Ux. 

We will now consider the remaining terms in (1.4) of higher order of smallness with respect to & For 
the third and higher approximations, it is no longer possible to assume that the perturbed flow is 
isentropic. The curved weak shock waves that arise generate entropy gradients (the entropy jump at 
these discontinuities is a third-order quantity with respect to the amplitude of the pressure jump) which, 
according to Crocco's formula, determine the flow vorticity. It can be assumed that the velocity 
components of a gas in perturbed flow are the sum of a potential and small non-potential component. 
The derivatives of the latter occur in the third approximation, in accordance with formula (1.5). 

We now consider the remaining terms of the third order of smallness (order e2), defined by the 
potential in Eq. (1.4) 

y - 1 q~2yq~= _ 2~Ox~prq~x v _ ( , / _  1)~otcpry _ 2~ovq~y t 
2 " " 

(5.7) 

The only new derivative not allowed for in the previous approximations in (5.7) is %t. 
The only potential term of the fourth order of smallness (order e 3) in (1.4) 

"t + 1  2 ( 5 . 8 )  
2 q~Yq~>~' 

It contains no deriwLtives that have not already been taken into account. 
As one might expect, the third and fourth approximations contain mainly small additions to the terms 

that have been allowed for in the previous approximations, showing that it is not essential to take into 
account higher (third and fourth) approximations of the transonic expansion when investigating transonic 
flows. Equation (5.1) appears to be quite suitable for analysing unsteady transonic flows. We merely 
note that even allowing for (5.7) and (5.8), the equation is not invariant under an interchange of the 
space axes. Thus the results obtained from the energy inequalities for mixed problems will depend on 
the choice of the line on which the boundary conditions are given. 

6. C O N C L U S I O N  

When studying unsteady transonic flows, the singular equation considered here must obviously be 
used instead of the LRT. It gives a description of the flow pattern near the sound barrier which is better 
from a physical standpoint. It enables the behaviour in low- and high-frequency unsteady perturbations 
of the flow to be analysed, has no degenerate characteristic surfaces and allows for the construction of 
the cone of dependence of the solution on the initial data. The Cauchy problem for this equation is 
well-posed and, at least in the small, its solution is unique. It is necessary to use modifications of the 
equation of unsteady transonic flow which include higher approximations of the transonic expansion 
to investigate the features of transonic flows in a spatial (two-dimensional) formulation. 

I became interested in the question of transonic flow largely as a result of reading the monograph 
by O. S. Ryzhov [2] and having numerous discussions with V. N. Diyesperov, to whom I offer my deep 
gratitude. 
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